Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Environ Sci Technol ; 57(14): 5544-5557, 2023 04 11.
Artículo en Inglés | MEDLINE | ID: mdl-36972291

RESUMEN

Aqueous film-forming foams historically were used during fire training activities on Joint Base Cape Cod, Massachusetts, and created an extensive per- and polyfluoroalkyl substances (PFAS) groundwater contamination plume. The potential for PFAS bioconcentration from exposure to the contaminated groundwater, which discharges to surface water bodies, was assessed with mobile-laboratory experiments using groundwater from the contamination plume and a nearby reference location. The on-site continuous-flow 21-day exposures used male and female fathead minnows, freshwater mussels, polar organic chemical integrative samplers (POCIS), and polyethylene tube samplers (PETS) to evaluate biotic and abiotic uptake. The composition of the PFAS-contaminated groundwater was complex and 9 PFAS were detected in the reference groundwater and 17 PFAS were detected in the contaminated groundwater. The summed PFAS concentrations ranged from 120 to 140 ng L-1 in reference groundwater and 6100 to 15,000 ng L-1 in contaminated groundwater. Biotic concentration factors (CFb) for individual PFAS were species, sex, source, and compound-specific and ranged from 2.9 to 1000 L kg-1 in whole-body male fish exposed to contaminated groundwater for 21 days. The fish and mussel CFb generally increased with increasing fluorocarbon chain length and were greater for sulfonates than for carboxylates. The exception was perfluorohexane sulfonate, which deviated from the linear trend and had a 10-fold difference in CFb between sites, possibly because of biotransformation of precursors such as perfluorohexane sulfonamide. Uptake for most PFAS in male fish was linear over time, whereas female fish had bilinear uptake indicated by an initial increase in tissue concentrations followed by a decrease. Uptake of PFAS was less for mussels (maximum CFb = 200) than for fish, and mussel uptake of most PFAS also was bilinear. Although abiotic concentration factors were greater than CFb, and values for POCIS were greater than for PETS, passive samplers were useful for assessing PFAS that potentially bioconcentrate in fish but are present at concentrations below method quantitation limits in water. Passive samplers also accumulate short-chain PFAS that are not bioconcentrated.


Asunto(s)
Fluorocarburos , Agua Subterránea , Contaminantes Químicos del Agua , Animales , Masculino , Femenino , Contaminantes Químicos del Agua/análisis , Peces , Agua , Fluorocarburos/análisis , Alcanosulfonatos , Massachusetts , Polietileno
2.
Environ Sci Technol ; 56(2): 845-861, 2022 01 18.
Artículo en Inglés | MEDLINE | ID: mdl-34978800

RESUMEN

River waters contain complex chemical mixtures derived from natural and anthropogenic sources. Aquatic organisms are exposed to the entire chemical composition of the water, resulting in potential effects at the organismal through ecosystem level. This study applied a holistic approach to assess landscape, hydrological, chemical, and biological variables. On-site mobile laboratory experiments were conducted to evaluate biological effects of exposure to chemical mixtures in the Shenandoah River Watershed. A suite of 534 inorganic and organic constituents were analyzed, of which 273 were detected. A watershed-scale accumulated wastewater model was developed to predict environmental concentrations of chemicals derived from wastewater treatment plants (WWTPs) to assess potential aquatic organism exposure for all stream reaches in the watershed. Measured and modeled concentrations generally were within a factor of 2. Ecotoxicological effects from exposure to individual components of the chemical mixture were evaluated using risk quotients (RQs) based on measured or predicted environmental concentrations and no effect concentrations or chronic toxicity threshold values. Seventy-two percent of the compounds had RQ values <0.1, indicating limited risk from individual chemicals. However, when individual RQs were aggregated into a risk index, most stream reaches receiving WWTP effluent posed potential risk to aquatic organisms from exposure to complex chemical mixtures.


Asunto(s)
Ríos , Contaminantes Químicos del Agua , Organismos Acuáticos , Ecosistema , Monitoreo del Ambiente , Ríos/química , Aguas Residuales , Contaminantes Químicos del Agua/toxicidad
3.
Environ Sci Technol ; 53(17): 10070-10081, 2019 Sep 03.
Artículo en Inglés | MEDLINE | ID: mdl-31432661

RESUMEN

Increasing global reliance on stormwater control measures to reduce discharge to surface water, increase groundwater recharge, and minimize contaminant delivery to receiving waterbodies necessitates improved understanding of stormwater-contaminant profiles. A multiagency study of organic and inorganic chemicals in urban stormwater from 50 runoff events at 21 sites across the United States demonstrated that stormwater transports substantial mixtures of polycyclic aromatic hydrocarbons, bioactive contaminants (pesticides and pharmaceuticals), and other organic chemicals known or suspected to pose environmental health concern. Numerous organic-chemical detections per site (median number of chemicals detected = 73), individual concentrations exceeding 10 000 ng/L, and cumulative concentrations up to 263 000 ng/L suggested concern for potential environmental effects during runoff events. Organic concentrations, loads, and yields were positively correlated with impervious surfaces and highly developed urban catchments. Episodic storm-event organic concentrations and loads were comparable to and often exceeded those of daily wastewater plant discharges. Inorganic chemical concentrations were generally dilute in concentration and did not exceed chronic aquatic life criteria. Methylmercury was measured in 90% of samples with concentrations that ranged from 0.05 to 1.0 ng/L.


Asunto(s)
Agua Subterránea , Plaguicidas , Hidrocarburos Policíclicos Aromáticos , Contaminantes Químicos del Agua , Monitoreo del Ambiente , Lluvia , Estados Unidos
4.
Environ Sci Technol ; 53(7): 3429-3440, 2019 04 02.
Artículo en Inglés | MEDLINE | ID: mdl-30888795

RESUMEN

Reuse of municipal and industrial wastewater treatment plant (WWTP) effluent is used to augment freshwater supplies globally. The Shenandoah River Watershed (U.S.A.) was selected to conduct on-site exposure experiments to assess endocrine disrupting characteristics of different source waters. This investigation integrates WWTP wastewater reuse modeling, hydrological and chemical characterization, and in vivo endocrine disruption bioassessment to assess contaminant sources, exposure pathways, and biological effects. The percentage of accumulated WWTP effluent in each river reach (ACCWW%) was used to predict environmental concentrations for consumer product chemicals (boron), pharmaceutical compounds (carbamazepine), and steroidal estrogens (estrone, 17-ß-estradiol, estriol, and 17-α-ethinylestradiol). Fish endocrine disruption was evaluated using vitellogenin induction in adult male or larval fathead minnows. Water samples were analyzed for >500 inorganic and organic constituents to characterize the complex contaminant mixtures. Municipal ACCWW% at drinking water treatment plant surface water intakes ranged from <0.01 to 2.0% under mean-annual streamflow and up to 4.5% under mean-August streamflow. Measured and predicted environmental concentrations resulted in 17-ß-estradiol equivalency quotients ranging from 0.002 to 5.0 ng L-1 indicating low-to-moderate risk of fish endocrine disruption. Results from the fish exposure experiments showed low (0.5- to 3.2-fold) vitellogenin induction in adult males.


Asunto(s)
Disruptores Endocrinos , Contaminantes Químicos del Agua , Animales , Estrógenos , Masculino , Ríos , Eliminación de Residuos Líquidos , Aguas Residuales
5.
Environ Sci Technol ; 51(18): 10344-10356, 2017 Sep 19.
Artículo en Inglés | MEDLINE | ID: mdl-28862461

RESUMEN

Major floods adversely affect water quality through surface runoff, groundwater discharge, and damage to municipal water infrastructure. Despite their importance, it can be difficult to assess the effects of floods on streamwater chemistry because of challenges collecting samples and the absence of baseline data. This study documents water quality during the September 2013 extreme flood in the South Platte River, Colorado, USA. Weekly time-series water samples were collected from 3 urban source waters (municipal tap water, streamwater, and wastewater treatment facility effluent) under normal-flow and flood conditions. In addition, water samples were collected during the flood at 5 locations along the South Platte River and from 7 tributaries along the Colorado Front Range. Samples were analyzed for 54 major and trace elements. Specific chemical tracers, representing different natural and anthropogenic sources and geochemical behaviors, were used to compare streamwater composition before and during the flood. The results differentiate hydrological processes that affected water quality: (1) in the upper watershed, runoff diluted most dissolved constituents, (2) in the urban corridor and lower watershed, runoff mobilized soluble constituents accumulated on the landscape and contributed to stream loading, and (3) flood-induced groundwater discharge mobilized soluble constituents stored in the vadose zone.


Asunto(s)
Inundaciones , Oligoelementos/análisis , Ciudades , Colorado , Agua Dulce , Ríos
6.
Sci Total Environ ; 568: 916-925, 2016 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-27350092

RESUMEN

Pharmaceutical contamination of contiguous groundwater is a substantial concern in wastewater-impacted streams, due to ubiquity in effluent, high aqueous mobility, designed bioactivity, and to effluent-driven hydraulic gradients. Wastewater treatment facility (WWTF) closures are rare environmental remediation events; offering unique insights into contaminant persistence, long-term wastewater impacts, and ecosystem recovery processes. The USGS conducted a combined pre/post-closure groundwater assessment adjacent to an effluent-impacted reach of Fourmile Creek, Ankeny, Iowa, USA. Higher surface-water concentrations, consistent surface-water to groundwater concentration gradients, and sustained groundwater detections tens of meters from the stream bank demonstrated the importance of WWTF effluent as the source of groundwater pharmaceuticals as well as the persistence of these contaminants under effluent-driven, pre-closure conditions. The number of analytes (110 total) detected in surface water decreased from 69 prior to closure down to 8 in the first post-closure sampling event approximately 30 d later, with a corresponding 2 order of magnitude decrease in the cumulative concentration of detected analytes. Post-closure cumulative concentrations of detected analytes were approximately 5 times higher in proximal groundwater than in surface water. About 40% of the 21 contaminants detected in a downstream groundwater transect immediately before WWTF closure exhibited rapid attenuation with estimated half-lives on the order of a few days; however, a comparable number exhibited no consistent attenuation during the year-long post-closure assessment. The results demonstrate the potential for effluent-impacted shallow groundwater systems to accumulate pharmaceutical contaminants and serve as long-term residual sources, further increasing the risk of adverse ecological effects in groundwater and the near-stream ecosystem.


Asunto(s)
Agua Subterránea/análisis , Preparaciones Farmacéuticas/análisis , Eliminación de Residuos Líquidos , Aguas Residuales/análisis , Contaminantes Químicos del Agua/análisis , Monitoreo del Ambiente , Iowa
7.
Environ Pollut ; 193: 173-180, 2014 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-25038376

RESUMEN

Pharmaceutical contamination of shallow groundwater is a substantial concern in effluent-dominated streams, due to high aqueous mobility, designed bioactivity, and effluent-driven hydraulic gradients. In October and December 2012, effluent contributed approximately 99% and 71%, respectively, to downstream flow in Fourmile Creek, Iowa, USA. Strong hydrologic connectivity was observed between surface-water and shallow-groundwater. Carbamazepine, sulfamethoxazole, and immunologically-related compounds were detected in groundwater at greater than 0.02 µg L(-1) at distances up to 6 m from the stream bank. Direct aqueous-injection HPLC-MS/MS revealed 43% and 55% of 110 total pharmaceutical analytes in surface-water samples in October and December, respectively, with 16% and 6%, respectively, detected in groundwater approximately 20 m from the stream bank. The results demonstrate the importance of effluent discharge as a driver of local hydrologic conditions in an effluent-impacted stream and thus as a fundamental control on surface-water to groundwater transport of effluent-derived pharmaceutical contaminants.


Asunto(s)
Analgésicos no Narcóticos/análisis , Antiinfecciosos/análisis , Carbamazepina/análisis , Agua Subterránea/análisis , Sulfametoxazol/análisis , Aguas Residuales/química , Contaminantes Químicos del Agua/análisis , Monitoreo del Ambiente , Filtración , Iowa , Espectrometría de Masas en Tándem
8.
Environ Sci Technol ; 47(5): 2177-88, 2013 Mar 05.
Artículo en Inglés | MEDLINE | ID: mdl-23398602

RESUMEN

Natural and synthetic organic contaminants in municipal wastewater treatment plant (WWTP) effluents can cause ecosystem impacts, raising concerns about their persistence in receiving streams. In this study, Lagrangian sampling, in which the same approximate parcel of water is tracked as it moves downstream, was conducted at Boulder Creek, Colorado and Fourmile Creek, Iowa to determine in-stream transport and attenuation of organic contaminants discharged from two secondary WWTPs. Similar stream reaches were evaluated, and samples were collected at multiple sites during summer and spring hydrologic conditions. Travel times to the most downstream (7.4 km) site in Boulder Creek were 6.2 h during the summer and 9.3 h during the spring, and to the Fourmile Creek 8.4 km downstream site times were 18 and 8.8 h, respectively. Discharge was measured at each site, and integrated composite samples were collected and analyzed for >200 organic contaminants including metal complexing agents, nonionic surfactant degradates, personal care products, pharmaceuticals, steroidal hormones, and pesticides. The highest concentration (>100 µg L(-1)) compounds detected in both WWTP effluents were ethylenediaminetetraacetic acid and 4-nonylphenolethoxycarboxylate oligomers, both of which persisted for at least 7 km downstream from the WWTPs. Concentrations of pharmaceuticals were lower (<1 µg L(-1)), and several compounds, including carbamazepine and sulfamethoxazole, were detected throughout the study reaches. After accounting for in-stream dilution, a complex mixture of contaminants showed little attenuation and was persistent in the receiving streams at concentrations with potential ecosystem implications.


Asunto(s)
Monitoreo del Ambiente , Compuestos Orgánicos/análisis , Ríos/química , Aguas Residuales/química , Contaminantes Químicos del Agua/análisis , Colorado , Ecosistema , Iowa , Eliminación de Residuos Líquidos
9.
Environ Sci Technol ; 46(2): 860-8, 2012 Jan 17.
Artículo en Inglés | MEDLINE | ID: mdl-22208914

RESUMEN

The majority of previous research investigating the fate of endocrine-disrupting compounds has focused on single processes generally in controlled laboratory experiments, and limited studies have directly evaluated their fate and transport in rivers. This study evaluated the fate and transport of 4-nonylphenol, 17ß-estradiol, and estrone in a 10-km reach of the Redwood River in southwestern Minnesota. The same parcel of water was sampled as it moved downstream, integrating chemical transformation and hydrologic processes. The conservative tracer bromide was used to track the parcel of water being sampled, and the change in mass of the target compounds relative to bromide was determined at two locations downstream from a wastewater treatment plant effluent outfall. In-stream attenuation coefficients (k(stream)) were calculated by assuming first-order kinetics (negative values correspond to attenuation, whereas positive values indicate production). Attenuation of 17ß-estradiol (k(stream) = -3.2 ± 1.0 day(-1)) was attributed primarily due to sorption and biodegradation by the stream biofilm and bed sediments. Estrone (k(stream) = 0.6 ± 0.8 day(-1)) and 4-nonylphenol (k(stream) = 1.4 ± 1.9 day(-1)) were produced in the evaluated 10-km reach, likely due to biochemical transformation from parent compounds (17ß-estradiol, 4-nonylphenolpolyethoxylates, and 4-nonyphenolpolyethoxycarboxylates). Despite attenuation, these compounds were transported kilometers downstream, and thus additive concentrations from multiple sources and transformation of parent compounds into degradates having estrogenic activity can explain their environmental persistence and widespread observations of biological disruption in surface waters.


Asunto(s)
Estradiol/química , Fenoles/química , Ríos/química , Contaminantes Químicos del Agua/química , Biodegradación Ambiental , Biopelículas , Monitoreo del Ambiente , Minnesota , Fotólisis
10.
Environ Sci Technol ; 45(7): 2575-83, 2011 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-21381683

RESUMEN

Understanding the potential effects of increased reliance on wastewater treatment plant (WWTP) effluents to meet municipal, agricultural, and environmental flow requires an understanding of the complex chemical loading characteristics of the WWTPs and the assimilative capacity of receiving waters. Stream ecosystem effects are linked to proportions of WWTP effluent under low-flow conditions as well as the nature of the effluent chemical mixtures. This study quantifies the loading of 58 inorganic constituents (nutrients to rare earth elements) from WWTP discharges relative to upstream landscape-based sources. Stream assimilation capacity was evaluated by Lagrangian sampling, using flow velocities determined from tracer experiments to track the same parcel of water as it moved downstream. Boulder Creek, Colorado and Fourmile Creek, Iowa, representing two different geologic and hydrologic landscapes, were sampled under low-flow conditions in the summer and spring. One-half of the constituents had greater loads from the WWTP effluents than the upstream drainages, and once introduced into the streams, dilution was the predominant assimilation mechanism. Only ammonium and bismuth had significant decreases in mass load downstream from the WWTPs during all samplings. The link between hydrology and water chemistry inherent in Lagrangian sampling allows quantitative assessment of chemical fate across different landscapes.


Asunto(s)
Monitoreo del Ambiente/métodos , Compuestos Inorgánicos/análisis , Ríos/química , Contaminantes Químicos del Agua/análisis , Contaminación Química del Agua/estadística & datos numéricos , Ecosistema , Eliminación de Residuos Líquidos , Movimientos del Agua
11.
Environ Sci Technol ; 43(13): 4843-50, 2009 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-19673274

RESUMEN

Organic wastewater contaminants (OWCs) were measured in samples collected from monitoring wells located along a 4.5-km transect of a plume of groundwater contaminated by 60 years of continuous rapid infiltration disposal of wastewater treatment plant effluent. Fifteen percent of the 212 OWCs analyzed were detected, including the antibiotic sulfamethoxazole (SX), the nonionic surfactant degradation product 4-nonylphenol (NP), the solvent tetrachloroethene (PCE), and the disinfectant 1,4-dichlorobenzene (DCB). Comparison of the 2005 sampling results to data collected from the same wells in 1985 indicates that PCE and DCB are transported more rapidly in the aquiferthan NP, consistent with predictions based on compound hydrophobicity. Natural gradient in situ tracer experiments were conducted to evaluate the subsurface behavior of SX, NP, and the female sex hormone 17beta-estradiol (E2) in two oxic zones in the aquifer: (1) a downgradient transition zone at the interface between the contamination plume and the overlying uncontaminated groundwater and (2) a contaminated zone located beneath the infiltration beds, which have not been loaded for 10 years. In both zones, breakthrough curves for the conservative tracer bromide (Br-) and SX were nearly coincident, whereas NP and E2 were retarded relative to Br- and showed mass loss. Retardation was greater in the contaminated zone than in the transition zone. Attenuation of NP and E2 in the aquifer was attributed to biotransformation, and oxic laboratory microcosm experiments using sediments from the transition and contaminated zones show that uniform-ring-labeled 14C 4-normal-NP was biodegraded more rapidly 130-60% recovered as 14CO2 in 13 days) than 4-14C E2 (20-90% recovered as 14CO2 in 54 days). There was little difference in mineralization potential between sites.


Asunto(s)
Estradiol/análisis , Fenoles/análisis , Sulfametoxazol/análisis , Eliminación de Residuos Líquidos/métodos , Contaminantes Químicos del Agua/análisis , Purificación del Agua/métodos , Geografía , Massachusetts , Modelos Químicos , Modelos Estadísticos , Aguas del Alcantarillado , Administración de Residuos , Abastecimiento de Agua
12.
Environ Sci Technol ; 40(4): 1154-62, 2006 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-16572769

RESUMEN

Disposal of treated wastewater for more than 60 years onto infiltration beds on Cape Cod, Massachusetts produced a groundwater contaminant plume greater than 6 km long in a surficial sand and gravel aquifer. In December 1995 the wastewater disposal ceased. A long-term, continuous study was conducted to characterize the post-cessation attenuation of the plume from the source to 0.6 km downgradient. Concentrations and total pools of mobile constituents, such as boron and nitrate, steadily decreased within 1-4 years along the transect. Dissolved organic carbon loads also decreased, but to a lesser extent, particularly downgradient of the infiltration beds. After 4 years, concentrations and pools of carbon and nitrogen in groundwater were relatively constant with time and distance, but substantially elevated above background. The contaminant plume core remained anoxic for the entire 10-year study period; temporal patterns of integrated oxygen deficit decreased slowly at all sites. In 2004, substantial amounts of total dissolved carbon (7 mol C m(-2)) and fixed (dissolved plus sorbed) inorganic nitrogen (0.5 mol N m(-2)) were still present in a 28-m vertical interval at the disposal site. Sorbed constituents have contributed substantially to the dissolved carbon and nitrogen pools and are responsible for the long-term persistence of the contaminant plume. Natural aquifer restoration at the discharge location will take at least several decades, even though groundwater flow rates and the potential for contaminant flushing are relatively high.


Asunto(s)
Carbono/análisis , Nitrógeno/análisis , Eliminación de Residuos Líquidos , Abastecimiento de Agua/análisis , Massachusetts , Contaminantes Químicos del Agua
13.
Environ Sci Technol ; 40(2): 603-11, 2006 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-16468409

RESUMEN

Increasing demands on water resources in arid environments make reclamation and reuse of municipal wastewater an important component of the water budget. Treatment wetlands can be an integral part of the water-reuse cycle providing both water-quality enhancement and habitat functions. When used for habitat, the bioaccumulation potential of contaminants in the wastewater is a critical consideration. Water and fish samples collected from the Tres Rios Demonstration Constructed Wetlands near Phoenix, Arizona, which uses secondary-treated wastewater to maintain an aquatic ecosystem in a desert environment, were analyzed for hydrophobic organic compounds (HOC) and trace elements. Semipermeable membrane devices (SPMD) were deployed to investigate uptake of HOC. The wetlands effectively removed HOC, and concentrations of herbicides, pesticides, and organic wastewater contaminants decreased 40-99% between inlet and outlet. Analysis of Tilapia mossambica and Gambusia affinis indicated accumulation of HOC, including p,p'-DDE and trans-nonachlor. The SPMD accumulated the HOC detected in the fish tissue as well as additional compounds. Trace-element concentrations in whole-fish tissue were highly variable, but were similar between the two species. Concentrations of HOC and trace elements varied in different fish tissue compartments, and concentrations in Tilapia liver tissue were greater than those in the whole organism or filet tissue. Bioconcentration factors for the trace elements ranged from 5 to 58,000 and for the HOC ranged from 530 to 150,000.


Asunto(s)
Peces/metabolismo , Contaminantes Químicos del Agua/metabolismo , Animales , Herbicidas/metabolismo , Compuestos Orgánicos/análisis , Plaguicidas/metabolismo , Oligoelementos/análisis
14.
Environ Sci Technol ; 38(7): 2209-16, 2004 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-15112826

RESUMEN

The fate of volatile organic compounds was evaluated in a wastewater-dependent constructed wetland near Phoenix, AZ, using field measurements and solute transport modeling. Numerically based volatilization rates were determined using inverse modeling techniques and hydraulic parameters established by sodium bromide tracer experiments. Theoretical volatilization rates were calculated from the two-film method incorporating physicochemical properties and environmental conditions. Additional analyses were conducted using graphically determined volatilization rates based on field measurements. Transport (with first-order removal) simulations were performed using a range of volatilization rates and were evaluated with respect to field concentrations. The inverse and two-film reactive transport simulations demonstrated excellent agreement with measured concentrations for 1,4-dichlorobenzene, tetrachloroethene, dichloromethane, and trichloromethane and fair agreement for dibromochloromethane, bromodichloromethane, and toluene. Wetland removal efficiencies from inlet to outlet ranged from 63% to 87% for target compounds.


Asunto(s)
Ecosistema , Hidrocarburos/análisis , Eliminación de Residuos Líquidos/métodos , Purificación del Agua/métodos , Biodegradación Ambiental , Monitoreo del Ambiente , Compuestos Orgánicos , Volatilización
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...